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STATE OF STRESS OF PLATE WITH A THIN-WALLED INCLUSION 
ALONG THE ARC OF A CIRCLE* 

1.1. BERNAR and V.K. OPANASOVICH 

An approach, different in comparison to /l/, is proposed for the investigation of 
the influence of a thin-walled elastic inclusion along the arc of a circle on the 
state of stress of a homogeneous isotropicplate. The solutionoftheproblemreduces to 
aSystemoftwosingular integro-differential equations of Prandtl type. A numerical 
analysis is presented for the stress intensity coefficients. 

1. Let us consider the equilibrium of an isotropic plate with a thin-walled elastic in- 
clusion of constant width along the arc of a circle of radius R. We assume that the plate is 
subjected to uniformly distributed stresses cr, and u2 at infinity (Fig-l). 

Let 2h denote the width of the inclusion, 2~ the aperture angle, L is the arc of the 
circle with central angle 2~. and a and b the lower and upper ends of the inclusion, respect- 
ively. We ascribe the subscript 0 to quantities characterizing the thin-walled inclusion. 
The boundary value of the function on the edge of the inclusion that is closer to the center 
of the circle will be denoted with a plus sign, while the other edge will be denoted with a 
minus. 
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(v is the Poisson's ratio). 

s.2 (2): 

The following expansions are valid for the functions m(z) and 

al(z)d+O(~), lzl>l; n.(z)=Bo--~+O(~)~I~l<~ 
r= +cu, + u*), r'= - +(uI - c~O)e-*~~, Bo=Q,o 

We assume that the following boundary conditions can hold 
on the edges of the inclusion 

(urr +ir,a$=(c,+ %??)f, (V, i iv*)f=(V, + jVe)f (1.1) 

The components u,, c++, rrd of the stress tensor, and the 
components V, and V+ of the displacement vector under plane 
elasticity theory conditions are expressed in terms of two 
analytic functions CD(z) and Q(z) by means of the following 
formulas /2/ 

~(~,+~~(~)+(l-~)[~-zID'o]=m (1.2) 

%u+)-+2(-z)- (1 +-)[cD(z)-?@+2~rz 

m = u,, + iT&,, 
$3 

n=7 -&K+W+i(v,+V*)l 
C 2 

x=3--v 
1+v 

(1.3) 

Using the formulas (1.2) and neglecting higher order quantities of smallness as compared 
with h, we can write for the thin-walled inclusion 

mo+ - mo-= %i+A (t), I& (1.4) 

mo+ + mO-= 2 
C 
@0((t) + X@j + + r0 (t)lv EL 

no+-no-=$/3(t). EL 

no+ + no- = x ’ [xo(Do (t) - a (4 - _ lg- T&)] + zie, KS 
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Uere I&, and ro(t) and unknown functions to be determined, and e is the angle of turning 

of the inclusion as a riaid whole. 

We refer the 
plate. Using the 
value problems to 
of jumps L: 

boundary conditions from the edges of the inclusion to the line L for the 
relationships (l.l), (1.2), and (1.41, we arrive at the following boundary 
determine the piecewise-holomorphic functions m(z) and Q(z) with the line 

[O(t) - Q(t)]'- [CD@) - D(t)]-= 2i 4 A(t), t=L 

[x@(t) + Q(t)]‘- [ND(t) + Q(t)]-= 2i++3(t), EL 

P 0) + Q (t)l+ + P(t) + Q WI- = 
2 @o(t)+G@-t 
1 

+4t,] 9 ta 

x I@+ (t) + @-@)I - t62+ (4 + Q- @)I = 
2 * [ %o@o (t) - wj - $r, (t)] + 4ip, ta 

(1.5) 

(1.6) 

(1.7) 

Solving the linear conjugate problem (1.5), we find 

b 

(D(2)’ h 
3.d (1 +N 

[y+t+ *i+t]+r 
a 

,(+-[-xggdt+ 

b 

is 3 

FIP 

xHU+x) 
gat +Bo-7 

a 0 

Substituting (1.7) into the relationships (1.6), we obtain the following system to two 
singular Prandtl-type integro-differential equations to determine the unknown fictions ma(t) 

and r,(t): 

(1.8) 

h 
al=-- 

fi(l+x) ( 
2Jgxo+l-% 1 

) 
h 

02 = -a”=R(1S- I 
2+-l+%) 

h bl=-- 
R(l-tN 1 

2%+$x- qxo], 

b2=- -fi(%-I)] 

On the basis of (1.7) and (1.3) we arrive at the following conditions: 

i&Oo(t)dt=O, f[$sq-f-&ro6Jdt=o 
a (I 

(1.9) 



that express the vanishing of the coefficient of l'z in the expansions (1.3). 
Executing the substitution 

in (1.8) and (1.9), we obtain 

(1.10) 

(1.11) 

2. Following /3/, we seek the solution of the system of equations (I.101 and (1.11) in 

the form 

rD,,(z)= K,, -k s,,arcsinr- fTTP2 zmu~,;‘@) (2.1) 
m=1 

r.(I)=.iIn+yoarcsinz-_~ 
w Y,Um-, (4 

c VI 
m--l 

where u,,,(z) are Chebyshev polynomials of the second kind, and X,,y,(m=(J. 1, . ..),Ko, MO are 
unknown compJ.ex coefficients. 

Substituting (2.1) into (1.71, we find 

(2.2) 
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(T,(z) are Chebyshev polynomials of the first kind, ml(z) and Q, (2) are bounded functions in 
the neighborhood of the ends of the inclusion). 

Substituting (2.1) into (1.10) and (1.111, after some manipulation we arrive at the fol- 
lowing infinite system of linear algebraic equations to determine the coefficients of the ex- 
pansions z,and gn 

Here 

*&, R = _ *B;, n e iflh (’ - IL’) 
Ru+x) pn In + w w G&O) 8’ - a (i go)]} 

4s = 218 (2fP fH (2, 
“‘iI (2, 

m - nf + H (2, m - n - 2) - 
m + n)- H (2, m + n + 2)J -_13 (I, m - n) - 

H(l, m-n- 2) + H (1, m + n) + H (I, m + n + 2)) + 
4~2(~g[B(2,m-n- 11 - Ji (2, m + n + i)I -IT (1, m- 
n - I>+ ff 0, m + n + 1)} - i$* [P, - ip (Lm+l + L_~) - 
43*Ll {i [If (1, m + 1) -+ H (1, m - i)] + 2fbR (1, m)) 

(2.4) 
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Y - C, + 4/I’ j, E;bl ([H (3,Zk - n- n- 1) - H (3,2k f n+ 1)~ fit- 

H(2,2k-nn 1) + H(2,2k + n-t 1)) - 

2ib i EOk-liH(i,2k-n) + H(i,2k-n- 2)- R(1,2k+ n) -.. 

H(;.2fk f n -t- 2) - 2fY [H (2,2 k - n)+ H (2,2k -n - 2) -. 

H(2,2k + n) - H (2.2k -I- n + 2)]> 

W,, = -$- [D,, - Si$P,, - 2BS (Lw + -&I) f 4q=*] + 

iB IP, - iS (L+l -t- LA - 2BaLl (a + 88’ tBaH (2,O) - H( 1 ,O)j) 

c ;j?J 
na- EXkcl [H (1,2k -n - l)- H(l% + n + I)) 

ii=1 

R(m,n,k)=- 4(n+1)(k+~)Nm-t-V- 

(n - k)S]-l [(m + I)* - (n A- k f 2)‘]--‘cosa (,v, a~) 

G ,, = $. (0, - $P,,), Q, = - LfbcP,,i, 

Fn’z - nip (1 - P’) p 
R (i +x) n’ Fna= - R(! +x) 

4% (1 + w’) p 
n 

P Ik=(f-pa)(-p)kp-a, pzk+l=o, 

D NC+1 = ++-pp’)*(-p)kj3-“, D%,=O 

L pk= (;~;$$+;) [I + k(l -p)], ‘%k+,=o 

z Sk = 32 (- 1)” p”+a (1 + p)‘(i - p?-’ (2 [(i + p)* - p] + 

k (1. - p) [k (1 - p”) + 2 + (f + P)‘]}. 

&,I = 0 pz@+,kiO,1,2 ,... 

H(n, m) =[l i(_l)m]n(~)~-*~*n-lmliz(- 1)” X 

n-1 

Xi 
n_t~m~/Z-- i h--j---2 

i )( 
n_* )(!+V Cg=-cw+) 

,=0 

&k-1= x(Ei), 9 E~(~_~)=O (k=1,2,3,...) 

PO’@) = [ %o& - & f Mo (,+$)“I P’, cc’ = % 

The quasi-regualarity of the infinite system of linear algebraic equations (2.3) and (2.4) 
was investigated numerically for different parameters of the problem. 

Proceeding in the same manner as in /4/, we take values for the constants K. and M, such 

that possible particular cases would follow from the solution of the problem 

PO’ (x) = [ 2r \_ f’ (A&k)1 ] min (;* PO) 

P”‘(X) = [(x - 1) I- i_ P (*)?I min ; IQ 
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Then 

The angle of turning of the inclusion E is found from the condition (A is the domainof 

the inclusion) 

Re 

which becomes after manipulation 

2Rexo -Re ~y,(-22is(H(i,m-l)tR(l,nl+l)- 
m=r 

2pa[H(2, m- 1) -I- H(2,m+l)]l+ 8P[B”H(2,mi - H(l,mll)- 
Reyo{n+8~*[~aH(2,0)-~(1,0)]}=0 

(2.5) 

Following /5/, the state of stress of the plate in the neighborhood of the end of the 
inclusion can be represented in the polar coordinate system (p,~) (Fig.1) in the following 
form: 

Here Ki are stress intensity coefficients determined from the formulas 
0 

Klj-iKzjB_ 2h L 
E (1+x)- PO m=. 

&,(,jJ(_ i)(m+n@-j) 

&j-&j=_ 2h m 
c (l+x)Wmpo 

N,(d,)(- l)(m+rX*-j), 

Fig. 2 
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Fig.4 Fig.5 

Fig.3 

(j = 1 for the end a and j = 2 for the end 6). 

3. Let us examine certain limit cases. 

Plate with a crack along the arc of a circle (~~~0). Let us make the following 
replacement in (1.8) 

% @) = Ir& %I* (0, T,(f) = i&PO* @) 

We allow b-0, and substitute the solution of the singular integral equation obtained 
into (1.7), to find expressions for the functions CD(z) and Q(Z) that agree with thosepresented 
in /2/. 

Homogeneous plate (p= ~,x==xo). The case of a homogeneous plate can be obtained by 
two methods: by passing to the limit in (1.7) as k-0 , or by passing to the limit in (2.3)- 
(2.5) as p---k (in this case the homogeneous system of linear algebraic equations yields the 
solution e = z, = Y, -= 0 (m = 0.1, . ..). i.e., A (9 = B (q = 0). In both cases we have 

CD (2) = r, n (2) = r -FRlla' 

Plate with a thin-walled absolutely rigid inclusion along the arc of a 
circle (p,-rcro). Passing to the limit in (1.8) as pO-,oO, solving the singular integral 
equation obtained, and substituting this solution into (1.7), we find expressions for the func- 
tions e(r) and Q(z) that agree with those presented in /6/. 

Plate with a rectilinear thin-walled elastic inclusion (I --0, but Rq--l=consti. 
Letting (p-rO(~m_,.z) in (1.8) and introducing the notation 

we arrive at a system of two singular integro-differential equations of Prandtl type for the 
rectilinear thin-walled elastic inclusion /4/. 

4. The solution of the problem was analyzed numerically on the ES-1022 electronic com- 
puter, andthe results are represented in Figs.Z- 5. The calculations were performed for the 

following values of the parameters 

Ot = p, o'r = 0, k I(R sin cp) = O,i, v = c, = li3. 

The dependence of the stress intensity coefficients K *'= x,/(P~~~) at the point b on 
the relative stiffness d=l&k of the plate and inclusion for a= o is shown on Figs.2 and 

3. Values of Kj' for an inclusion aperture of cp== a16 correspond to the curves of i(i= i,2,3, 

4), and to the curves a+4 for the aperture angle rp = nl2. In the limit casesoftheproblem 

under investigation, the numerical values agree with the results obtained on the basis of /2, 

6,7/. 
The dependence of KS' at the same point on the angle a for an inclusion aperture angle Of 

rp= 43 is represented in Figs.4 and 5. The value of the relative stiffness a= --i corres- 

ponds to the curves of i (i= 1,2,3,4) and of d= 1 to the curve i+4. Let us note that the 



curves in Figs.3 and 5 are continuations of the corresponding curves in Figs.2 and 4, butonly 

in another scale. 
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