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STATE OF STRESS OF PLATE WITH A THIN-WALLED INCLUSION
ALONG THE ARC OF A CIRCLE”

I.I. BERNAR and V.K. OPANASOVICH

An approach, different in comparison to /1/, is proposed for the investigation of
the influence of a thin~walled elastic inclusion along the arc of a circle on the
state of stress of a homogeneous isotropic plate, The solution of the problem reduces to
a system of twosingular integro-differential equations of Prandtl type. A numerical
analysis is presented for the stress intensity coefficients.

1. Let us consider the equilibrium of an isotropic plate with a thin-walled elastic in-
clusion of constant width along the arc of a circle of radius R. We assume that the plate is
subjected to uniformly distributed stresses o; and 0, at infinity (Fig.l1).

Let 2k denote the width of the inclusion, 2¢ the aperture angle, L is the arc of the
circle with central angle 29, and ¢ and b the lower and upper ends of the inclusion, respect-
ively. We ascribe the subscript ( to quantities characterizing the thin-walled inclusion.

The boundary value of the function on the edge of the inclusion that is closer to the center
of the circle will be denoted with a plus sign, while the other edge will be denoted with a

minus.
We assume that the following boundary conditions can hold

=/
/ / ! / on the edges of the inclusion
[ . . .
(O +i1r0)3:=(orr+ itr0)%, (Vr T lVﬁ)oi=(Vr + iVg)E (1.1
The components Oy, Ogey Trp ©Of the stress tensor, and the
components V, and Vg of the displacement vector under plane

elasticity theory conditions are expressed in terms of two
analytic functions ®(z) and Q(z) by means of the following

AN

éz\ s, formulas /2/
0@ + 20 (£ 4 (1 - E)ow — 2T @) = (1.2)
1D (2) — - @ () — (1 — T )[OF) — T @] =2un
/ d'/ / m=0, + it n=%[f;’;(vr+ivo)+i(vr+l’o)}
Fi,g.l = ?-T-:

(v is the Poisson's ratio). The following expansions are valid for the functions ®(z) and
Q (2):

Fm
¢(z)=1‘+0(_;1§->, |z|>1; Q(z)=Bo———+0()|z|<1 (1.3)
I‘=“;,‘(m+vz), F’=—'}Z‘(01—0=)e’2"’v By=2(0)

Using the formulas (1.2) and neglecting higher oxder quantities of smallness as compared
with h, we can write for the thin-walled inclusion

met —me™ =2 A (), t=L (1.4)

p— 2
me* + my” =2 [(Do (t) - Do (t) + —%—I‘o ], tsL
net —no” == B, =L
N R .
et + 6™ = = (1000 () — Bo® — T Tol0)] + 22, tL
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AQ) =L o) + 55 DD — —’”—iro(t)
B ()= %05 o (1) — 5 Do ) + -5 To ®)

Here M, (t) and T (f) and unknown functions to be determined, and & is the angle of turning
of the inclusion as a rigid whole.

We refer the boundary conditions from the edges of the inclusion to the line L for the
plate. Using the relationships (1.1), (1.2), and (l1.4), we arrive at the following boundary
value problems to determine the piecewise-holomorphic functions @ (z) and Q (z) with the line
of jumps L:

©0) —QOF — 0@ — 2O =25 A®), t=L (1.5)
[ ©) + Q) — [0 () + RO = 2B ), =L
[@ (0 +ROF +[00)+ 20T = 1.6)

2 [co., () + Do ® + = To (:)J , teL
%[O (1) + O~ )] — [ )+ ()] =
2L [uod)o (t) — o)) — 2T (t)] + dipe, t=L

Solving the linear conjugate problem (1.5), we find

@) = ﬁ(i—h-ﬁ?)'[i A0 g4 L S a4 (1.7)

Al at +— SbB A g ]-i'Bn—I.ﬂ

R@)= nﬂ(f-i-u)[ u& t—3

Substituting (1.7) into the relationships (1.6), we obtain the following system to two

singular Prandtl-type integro-differential equations to determine the unknown functions @, (t)
and T, (t):

b
0o (t)+ Bo® + 5 Lo )+ = Sai@.,(u
b
AT eu as a
%S%ﬁmo(u)%"-?t-sga_o_r”(u)u—t:

r+30—¥, tel

L a0 () — o0 — Fho]+

+ (1.8)

b b
b d b a du
S 35 o )7{—,‘+11’-Sw‘”°(")77+

b

'R .

P REIPIRI.
a

a=— gy (Pt

h
"z=-“=——mﬁr(2—"+“)
h B

b1=—-R—“—+—u—)-[2‘K+—p:('K 1)“0],

h 1
b2=-— b3=—7q-(—1-m [2){-'—?(1(—1)]

On the basis of (1.7) and (l.3) we arrive at the following conditions:

)
b b
d 8 = R: 9@
S—aFtDo(t)dt=0, S[Wfpo(t)__ﬁ--%-ro(t)]dmo (1.9)
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that express the vanishing of the coefficient of {/z in the expansions (1.3).

Executing the substitutiocn

t="EE B p=—clge2 |z|<t
in (1.8) and (1.9), we cbtain
1 D 1
[ Dy (v) a QS (V) , . ag [ —x+if\2 Ty (v)
T‘ST‘L_—:"""‘T‘ST_—JH‘?’( ) gy -
1

T+ ip lv—z

-1

B (D2 +$—J"(?)+(:’—*'ﬁ—) Le@] +

m xr+if
}: :_Liﬁ {a: [®o (1) — ﬂ)o(—i)]+az[m__m])+
:, ((;:_lg:)); [To(1) — To(— 1) 4-
1
2iay| —ip N2 ot—i ,
1';5 (;:+‘Bg ) S :+,-g Ty (tdt=
-1

AT n-T (S5 ] 1ei<t
1

1 1
by [ ®) (@) D, () (u) bq {—x4if\2 Iy (v)
2 ar s 2 | S &SRR | S e

-1 -1 -1
S o @ (SR
L2810y (1) — Do (— DI + be [Do (D) — Do (— D} +

+i
b: fz——?ﬁ) Ts(1 To(— 1] - 2ib3p (zml )2 v
— T pyr Lol — Lot 7 \FTR

1
S “'B Ty (t) dt =
-1

1 1
' =+ ’, - T z—if , -
S ——2 ig My (2) dxr =0, S [m Dy’ () — PE | (I)]dz_ﬁ

= -1

(1.10)

(1.11)

2. Following /3/, we seek the solution of the system of equations (1.10) and (1.11) in

the form @
Z
M, (r)= Ky -F 7parcsinz — Y1 —1r Z —-——-'-‘——

m=t

VU m
::)_U.,-l-ynarcqu——]/lmzz "“(x

me=]

where U, (¥} are Chebyshev polynomials of the second kind, and Zm,ym(m = 0,1, ..

unknown complex coefficients.
Substituting (2.1) into (1.7}, we find

@

2ih cos (9f2) z o
@ =—TTmata L _O[N"(’) b (@]

To(iB :—;;—) + D {2)

o ik cos {9)2) z - o
RO =—FTmaATa K@ M[ K (3) - B(®) ]

.q 2—R

T,,.(tﬁ :+R
R?

Ny (2) =Tpy + xm—'zTymv

Rop(8) = %o — T + o Y XKo@ =VE— 8 z—D)

)+ 2 (2

(2.1

D), Koo My are
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(Tw () are Chebyshev polynomials of the first kind, ®;(z) and Q, () are bounded functions in

the neighborhood of the ends of the inclusion).

Substituting (2.1) into (1.10) and (1.1l), after some manipulation we arrive at the fol-
lowing infinite system of linear algebraic equations to determine the coefficients of the ex~

pansions ITmand Y,

(017, -+ QT + asly) 5 +
Z (‘43., n-1Tm *Ain, n1Zm -+ an. n-1¥m + *B:n, n=tlm) = P, ;.1
m=0

(butn + o, + balh) 2 +
(Afn, n-1%m + *szn, n—lzm ‘f" Bfu, n-lym +

m=0

*B:n. neim} + Qn-aiie == f S

ﬁmélz,,,{i[fl(i, m—1)+ H1,m+1)] —28H (1, m)} +
zo [~ 2B7H (1, 0)] =0

ﬁmz_l(i(d‘«‘m +ymH{A,m— 1)+ H(1,m+ 1)]—
28 (T — Ym) H(1, m)} + (%o — yo) [~ 28°H (1,0)] =0

Here
A}l,,,,, 1
*Am,n 1 |
A?n'ﬁ =2ﬂ xop.’ ;Puﬁ(m-—hnﬂk) {m=i‘2’_..)
LY L -y
B:n,n . 1 ag
Bfn,n “‘Jﬁi_p} Tm'n'%‘ bs Sm,n
*Bion= — *Bh v L) PGB (1, mt 1) +H (U, m—1)—
26*(H (2,m + 1) + H 2, m— )]} + 4B 1H (2, m)B* — H (1, m)}}
A5, n 1 a P
.Az.n 1 as F2
PO it d MG by P ) R
43 B I )
Btl) n 1 as
3 TP v, W
Bj ﬁ‘ ] Tl
egl . _ap _ Rl ~—y) p 2 1H (2.0) B
0,0 = 0. n =T n {7 -+ 8P [H (2,0)p* — H (1,0))}

Spm =20 (2B HQ2 m—n+HZ m—n—2 —
H@Z m4n—H@2 m+n+2]—H(@#, m—n)—
Hl,m—n—2y+H{U, m+n)+H{, m+nr+2)}+
prPHen—n— ) —H2m+n+Dl—H{d,m—
n—1)+H{@ m+n+ 1)} — if* [Pn— B (Las + Lpt) ~
20°La) i [H (1, m + 1) + H (1, m— 1)] + 2BH (1, m))

Ton,n= ’gofpn- — 8% (Lgy — B Zg)] R(m — 1, n, 2k) —

2ip kgx {Lsy + Logony — 2B*[Zax + Zoger)} R(m — 1,1, 2k — 1)

(2.3)

(2.4)
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VamCot 48* 3 Euvc (B (3,2 — n— 1) — H (3,2 + n+ 1) p1
HQ22%k—n—1)+ H22 +n+ 1) —

2ip kgl By {H (1,26 —n) + H(1,2k —n~2) — H(1,2k 4 n) —
H(1,2k +n +2)— 280 {H(2,2k —n)-+ H (2,26 —n — 2) —
H(2,2k +n) — H 22k +n+ 2))}

n =5~ [Dy — 3iBPp, — 2B (Lnsy + Lu-y) + 4IP*Ln] +

iB [Py — B (Lot + Lnor) — 2B2Ly] {n + 8B2 [B*H (2,0) — H (1,0)]}

Cam g ZE,H (HA2k —n—1)— H({1,2k + n 4 1)]

=1
Rm,n, )= —4(n+ 1) (k+ Dlm+ 1) —
(n — KPI(m + 1) — (n+ &+ D cos? [ ZEE 1)
Gn=5 (Dp— iBPs), Qn=— 2pnPui,

__ mph(t—u) Pk (1 %)
Fi=—"Fagw P W=—"Farn

Py=(1—p(—p)B? Puu=0,
Dagn= 5 (1 —ph* (=)',  Da=0
k ok
Ly=2o0 20 (k=P Laa=0
Zay =32 (— 1) p3 (1 + p) (1 ~ PP 2[(4 + P — p) +
k(= p)(k(1 —p%) + 2+ (1 + Pk

Zgep =0 (pztgﬂ%,kso,a,z,...)

B (n,my=[1 + (= " (£ ) grme (= 17

n—-1

;(n+|mi|/2~—1)(27;;—_]’1—2)(‘12_1)], <q=—czg2_f_>
By~ ey s Buen=0 (k=123

1
Puim = ~SJ [r —F (55 -0 @) LASTLILIS
Po1(z)=K°+K°—M°(_;::‘;éﬂ\)2
Pnﬂ=—25—§l[(n—l)r+fr(_—_~;3__i;3@_)z_

Vi—=U
Pia)| il

Py (z) = [ono— Ko+ Mo (%%)’] W, u,=_£;

The quasi-regualarity of the infinite system of linear algebraic equations (2.3) and (2.4)
was investigated numerically for different parameters of the problem.

Proceeding in the same manner as in /4/, we take values for the constants K, and M, such
that possible particular cases would follow from the solution of the problem

e v

Pl (z) = [(n — 1T + 1"'( ::41—6'5 H min g: o)
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Then

Pl =—ap[1 — Zin bl 1 (0P, — I[Py — 208 (Luwi+ Locs) —
8B2L, + 4if® (Znsy - Zn-) + 8B Z,])

Pyt=—np[1— 22 ] (o —1)TP, +

T [Pn— 2iB (Lnsy + Lna) — 8BL,, -+ 4B (Zoes 4+ Zna) +8B*Z, )
(A is the domainof

The angle of turning of the inclusion & is found from the condition

Resg[({)(z)—ﬁ(g)]dz=0

A

the inclusion)

which becomes after manipulation
2Rez, — Re Zym{—Ziﬁ(H(i,m—i)+ H(i,m41)— (2.5)
m=1
2B [H (2, m—1) + H (2, m+1)]) + 862 [B2H (2,m) — H (1, m)]})—
Reyo{n + 8B*[B*H (2,0) — H(1,0)]} =0

Following /5/, the state of stress of the plate in the neighborhocod of the end of the
(p, 7) (Fig.l) in the following

inclusion can be represented in the polar coordinate system

form:
gy 581-—63 —531 + 383
Oy =K1* 301—63 '+-K2* —331_ 333 -+
Toy L €1+ 3es

|

Sy + (1 + 2%) ¢y — 8514 (1 —2%) s,
+ K*f—3s1— (1 —20) 83| + 0 (p°)

Ka*{3c1 — (1 + 2%) 5
s1— (1 4 2%)sg o1+ (1 — 2%)cq
K
Ki*=4v‘§p, i=1,2,3,4 (s, =sin'sy,

Sy =sin ¥y, ¢; = cos Y/, ¥, ¢; = cos ¥,y)

Here K; are stress intensity coefficients determined from the formulas

i j=____2"__.1w R — {)imer)z-i)
Kl le (1+x)ﬁ?ii—$ o ”;o m(d])( )

i__; J'=______2l—w — {)(me1de-)
K — K = — e ety & V(@) (= Y70,

g {a, j=1
Iy, j=2
e S0 4 ;
7
7
Z
3
7
-7 g 7
P4 d
7 5
4
-3

Fig.2
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(=1 for the end a and =2 for the end b).
3. Let us examine certain limit cases.

Plate with a crack along the arc of a circle (po—0). Let us make the following
replacement in (1.8)

@y (1) = pofit Po* (1), To (1) = pafale* ()

We allow py— 0, and substitute the solution of the singular integral equation obtained
into (1.7), to find expressions for the functions ®(z) and Q{z) that agree with those presented
in /2/.

Homogeneous plate (n = pe, % = %). The case of a homogeneous plate can be obtained by
two methods: by passing to the limit in (1.7) as k-0 , or by passing to the limit in (2.3)—~
{2.5) as p-—+p (in this case the homogeneous system of linear algebraic eguations yields the
solutione= zm = ym =0(m =01, ...}, i,e., A () = pg () =0). In both cases we have

D(z=T, Q=T ~TRYs

Plate with a thin-walled absolutely rigid inclusion along the arc of a
circle (po—= o). Passing to the limit in (1.8) as to ~» 00, solving the singular integral
equation obtained, and substituting this solution into (1.7), we find expressions for the func-~
tions ®(z) and Q(z) that agree with those presented in /6/.

Plate with a rectilinear thin-walled elastic inclusion (¢ -0, but Re == const).
Letting ¢ -w0(Re-»1 in (1.8) and introducing the notation

M(t) = wg®y (1) — To (D -+ Toft)y, K= Do () + Do) ~Tol8)

we arrive at a system of two singular integro-differential equations of Prandtl type for the
rectilinear thin-walled elastic inclusion /4/.

4. The solution of the problem was analyzed numerically on the ES-1022 electronic com-
puter, and the results are represented in Figs.2- 5. The calculations were performed for the
following values of the parameters

o =P, 0,=0,h IR sin g) = 0,1, v = vg = Y.

The dependence of the stress intensity coefficients K/ = Ki/(PYRsmy¢) at the point b on
the relative stiffness d = lgw/p, of the plate and inclusion for a =0 is shown on Figs.2 and
3. Values of K for an inclusion aperture of ¢ = n/6 correspond to the curves of i(i= 1,23,
4), and to the curves :+ 4 for the aperture andle ¢ =a/2. In the limit cases of theproblem
under investigation, the numerical values agree with the results obtained on the basis of /2,
6,7/.

The dependence of Ky at the same point on the angle « for an inclusion aperture angle of

» = n/3 is represented in Figs.4 and 5. The value of the relative stiffness d= —1 corres-
ponds to the curves of i(i=1,2,3,4 and of d=1 to the curve i+ 4. Let us note that the
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curves in Figs.3 and 5 are continuations of the corresponding curves in Figs.Z2 and 4, butonly
in another scale.
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